Rekommenderade metoder

Diagnostik av infektioner i blod orsakade av bakterier och svamp

Version 1.1 mars 2022

För Föreningen i Klinisk Mikrobiologi

Claes Henning, Borås
Bodil Jönsson, Göteborg
Tor Monsen, Umeå
Karin Wallgren, Stockholm
Anna Åkerlund, Jönköping/Linköping
Volkan Özenci, Stockholm
Bakgrund

Föreningen för Klinisk Mikrobiologi (FKM) har sedan 1990-talet arbetat med att ta fram referensmetodik i Klinisk Mikrobiologi (Gula Böckerna, senare även tillgängligt i Wiki-format). Tidigare gjordes detta i samarbete med Folkhälsomyndighetens föregångare (Statens Bakteriologiska Laboratorium och Smittskyddsinstitutet). Referensmetodiken var som namnet antyder en referens för de mikrobiologiska laboratorierna i en tid då många laboratorier ackrediterades. Referensmetodiken har sedan dess varit den referens som funnits tillgänglig för svensk mikrobiologi och granskande organisationer.

Rekommendationerna är baserade på internationella riktlinjer och vid skrivandet tillgänglig relevant vetenskaplig litteratur. Där det finns dåligt vetenskapligt stöd har arbetsgruppen antingen avställt från en rekommendation eller givit en rekommendation baserat på de ingående medlemmarnas erfarenheter och kunskaper. I dessa fall vill gruppen uppmuntra kliniska mikrobiologer till att aktivt delta i eller driva forskning för att öka på det samlade vetenskapliga underlaget.

Nya delar av “Rekommenderade metoder” läggs ut för konsultation på www.mikrobiologi.net under en månad varefter arbetsgruppen diskutera inkomna förslag till ändringar och sedan fastställer den slutliga rekommendationen.

Den första delen är nu färdigställd och jag som huvudredaktör vill rikta ett stort tack till hela arbetsgruppen och särskilt till Anna Åkerlund för allt det jobb som lagts ned på att ta fram underlag, granska och sammanställa den nya rekommendationen.

Martin Sundqvist, Huvudredaktör, Örebro, mars 2022
Allmänt

I detta dokument beskrivs rekommenderade metoder för blododling inkluderat fungemi (svampinfektion i blod) samt metodik för diagnostik av endokardit och misstanke om infektion relaterad till kärlkatetrar. Rekommendationerna är baserade på internationella riktlinjer och relevant vetenskaplig litteratur. Där det finns icke tillräcklig vetenskapligt stöd har arbetsgruppen antingen avstått från en rekommendation eller givit en rekommendation baserad på de ingående medlemmarnas erfarenhet och kunnande.

Huvudbudskap i de nya rekommendationerna om blododling

- Blododling ska alltid tas innan insättande av intravenös antibiotikaterapi.
- För bästa möjliga prestanda krävs sammanlagt 40-60 mL blod hos vuxen.
- Alla flaskor i en blododlingsomgång fylls vid samma tidpunkt från samma perifera stick.
- Noggrann desinfektion och avskiljande av första portionen blod minskar risken för kontamination av blododlingen.
- För bibehållen odlingssensitivitet samt förbättrat utfall för patienten bör korta ledtider eftersträvas i alla led:
 - Tid från provtagning till inkubation.
 - Tid från odlings-positivitet till omhändertagande av positiv odling.
 - Tid från omhändertagande av positiv odling till remissvar (innehållande gramfärg och/eller art- och resistensbestämning).
Innehållsförteckning

Bakgrund .. 2
Allmänt ... 3
Innehållsförteckning .. 4
Definitioner .. 6
1. BLODODLING ... 7
 1.1 PREANALYS ... 7
 1.1.1 Indikation .. 7
 1.1.2 Remissuppgifter ... 8
 1.1.3 Provtagningsfrågor .. 8
 1.1.3.1 Provmaterial .. 8
 1.1.3.2 Inför provtagningsläget .. 8
 1.1.3.3 Blododlingsflaskor ... 9
 1.1.3.4 Provtagning ... 9
 1.1.3.5 Desinfektion ... 9
 1.1.3.6 Blodvolym och turordning ... 10
 1.1.3.7 Provtagningsfrågor vid barn ... 10
 1.1.4 Transport efter provtagningsläget .. 11
 1.2 ANALYS .. 12
 1.2.1 Remissregistrering .. 12
 1.2.2 Blododlingsläget ... 12
 1.2.3 Inkubationstid ... 12
 1.2.4 Tid till omhändertagande av positiv flaska .. 13
 1.2.5 Omhändertagande av positiv flaska .. 13
 1.2.5.1 Snabb artbestämning ... 14
 1.2.5.2 Direkt resistensbestämning .. 15
 1.2.5.3 Utdodning ... 15
 1.2.5.4 Hjälpmetoder för artidentifiering .. 156
 1.2.5.5 Larm om växt, positiv direktmikroskopi men utebliven växt efter vidare odling 19
 1.2.5.6 Larm om växt men negativ i direktmikroskopi ... 19
 1.2.5.7 Polymikrobiell blododling ... 19
 1.3 POSTANALYS ... 21
 1.3.1 Preliminärsvart ... 21
 1.3.2 Stuffsvar ... 24
1.4. ÖVRIGA ASPEKTER PÅ BLODODLING .. 25
1.4.1 Särskilda aspekter avseende diagnostik av fungemi .. 25
1.4.2 Anmälningsplikt och insamling för nationell mikrobiell övervakning 26
1.4.3 Frysning av stammar ... 26
2 SPECIALAVSNITT ... 28
2.1 DIAGNOSTIK VID MISSTÄNKT KATETERRELATERAD INFEKTION I BLODBANAN (CRBSI) 28
 2.1.2 Metoder .. 29
 2.1.2.1 Metoder för extraherad kateter .. 29
 2.1.2.2 Metod vid kvarvarande kateter .. 29
 3.1.2.3 Odling av implanterad venös kateter .. 31
2.2 DIAGNOSTIK AV INFEKTÖS ENDOKARDIT (IE) .. 31
 2.2.1 Art- och resistensbestämning vid infektiös endokardit .. 32
 2.2.2 Bloddodlingsnegativ infektiös endokardit ... 32
 2.2.3 Mikrobiologisk diagnostik av biologisk hjärtklaff ... 32
 2.2.4 Histopatologi ... 33
 2.2.5 Mikrobiologisk diagnostik av kablar och icke-biologisk hjärtklaff 33
3 FÖRTYDLIGANDEN OCH KOMMENTARER ... 34
 3.1. BLODODLING .. 34
 3.1.1 Desinfektion ... 34
 3.1.2 Avskiljning av första portionen blod .. 35
 3.1.3 Blodvolym ... 35
 3.1.4 Bloddodlingsflaskor ... 35
 3.1.5 Transport efter provtagning .. 36
 3.1.6 Larm omväxt ... 36
 3.1.7 Tid till omhändertagande av positiv flaska ... 37
 3.1.8 Blododling från barn ... 37
 3.2 FUNGEMI .. 38
 3.3 DIREKTPÅVISNING AV BAKTERIER OCH JÄSTSVAMP I BLOD .. 38
Referenser .. 40
Definitioner

Bakteremi = Bakterier i blodbanan

Blododling = Minst 2 flaskpar. För små barn = 1 Pediatrisk blododlingsflaska (PEDs).

BSI = Bloodstream infection (Infektion i blodbanan)

Central venös infart (CVI) = Ett begrepp som innefattar tunnelrad och icke-tunnelrad central venkateter (CVK), central dialyskateter (CDK), subkutan venport, midline kateter och peripheral inserted central catheter-line ("picc-line").

CIED = Cardiovascular Implantable Electronic Device

CRBSI = Catheter-related bloodstream infection (Kateterrelaterad infektion i blodbanan)

dTTP = differential Time To Positivity, se TTD nedan

Flaskpar = 1 aerob + 1 anaerob blododlingsflaska, fyllda med minst 10 mL blod per flaska.

Fungemi = Svamp i blodbanan

MALDI-TOF = Matrix Assisted Laser Desorption Ionization – Time Of Flight Mass Spectrometry

Parad blododling = Blododling där de tillhörande flaskparen tas vid samma odlingstillfälle men från olika provtagningslokaler; oftast flaskpar från centralvenös infart parat med flaskpar från perifert stick.

Perifer infart = Perifer venkateter (PVK)

Sepsis = Livshotande organdysfunktion, orsakat av ett stört systemiskt svar på infektion.

TTD = Time to Detection, Tid från inkubation i blododlingsskåp till positiv signal.
1. BLODODLING

1.1 PREANALYS

Huvudbudskap preanalys

- Blododling ska alltid tas innan insättande av intravenös antibiotikaterapi.
- För bästa möjliga prestanda krävs sammanlagt 40-60 mL blod hos vuxen.
- Alla flaskor i en blododlingsomgång fylls vid samma tidpunkt från samma perifera stick.
- Noggrann desinfektion samt avskiljning av första portionen blod minskar risken för kontamination.
- Start av inkubation av flaskor bör påbörjas inom 2 h efter provtagning.

1.1.1 Indikation

Blododling bör tas på vida indikationer på patienter med feber/hypotermi och allmänpåverkan samt vid misstanke om allvarlig infektionssjukdom. Blododling ska tas på patienter som avses erhålla behandling med intravenös antibiotika och bör övervägas vid byte av intravenös antibiotikaregim. Blododling kan även vara aktuell som uppföljning vid pågående behandling.

Att blododla efter påbörjad antimikrobiell behandling påverkar sensitiviteten negativt, trots neutraliserande ämnen (t.ex. resiner) i flaskan. Blododling ska därför tas före administrering av antimikrobiell behandling och om detta inte är möjligt, precis före nästa antibiotikados.

Att odla utan misstanke om bakteremi/fungemi rekommenderas inte, då det alltid föreligger risk för kontamination av odlingen som bland annat kan leda till onödig antimikrobiell behandling.

För identifiering av de patienter som har en misstanke om bakterier i blodbanan, såsom vid sepsis, meningit, och endokardit inklusive handläggning/behandling av dessa tillstånd, hänvisas till Infektionsläkarföreningens vårdprogram (www.infektion.net).
1.1.2 Remissuppgifter

Vårdgivare och laboratorium bör ha ett system för elektroniska remisser och svar. Remissuppgifter som bör framgå vid blododling:

- Provtagningslokal: Perifert eller via centralvenös infart. Vid parad blododling ska det tydligt framgå vilka flaskor som är tagna från respektive provtagningslokal (från centralvenös infart respektive perifer ven).

- Förändrad inkubationstid: Anamnes/information som föranleder förlängd inkubation ska framgå. Se ”1.2.3 Inkubationstid”.

1.1.3 Provtagning

1.1.3.1 Provmaterial

Venöst blod rekommenderas. Odling från artärblod ger inga fördelar framför venöst blod, men kan användas om venöst blod inte kan erhållas.

Postmortal blododling kan vara av värde i utredning av oväntad plötslig död. Prov tas så tidigt som möjligt men senast inom 48 h, om kroppen kylförvarats. Odlingsfynd ska tolkas med försiktighet.

1.1.3.2 Inför provtagning

Före provtagning märks blododlingsflaskorna med etiketter från det elektroniska remisshanteringssystemet inkluderat patientidentitet, tid för provtagning, provtagarens identitet, provtagande enhet och remitterande klinik.

Flaskor från vissa leverantörer kräver att en markering görs på flaskan (med hjälp av en skala på flankans etikett) för att säkra att korrekt blodvolym (minst 10 mL) dras från patienten.
1.1.3.3 Blododlingsflaskor

Vid ett blododlingstillfälle tas minst två flaskpar med sammanlagt minst 40 mL blod (minst 10 mL/flaska). För provtagning på små barn rekommenderas användandet av särskilda pediatriska flaskor, vilka är avsedda för mindre blodvolymer. Se särskilda anvisningar i stycket ”Provtagning vid blododling av barn”.

Vid misstanke på svampinfektion kan särskilda odlingsflaskor användas innehållande substrat som befrämjar svamptillväxt och antibiotika som förhindrar samtidig bakterieväxt. De används då som tilläggs till den ordinarie blododlingen och är av störst betydelse vid polymikrobiell infektion (se även stycket 1.4.1 ”Särskilda aspekter avseende diagnostik av fungemi”).

1.1.3.4 Provtagningslokal

Prov från centralvenös infart (t.ex. CVK) rekommenderas inte som rutinmässig provtagningslokal. Odling från central infart rekommenderas endast vid frågeställning om kolonisation eller misstanke om kateterrelaterad bakteremi/fungemi och ska då kompletteras med odling perifert. Blododling endast från central infart kan dock vara ett måste om perifer provtagning inte är möjlig. För mer information se stycke 2.1.

På barn under neonatalperioden kan spruta och spets användas vid provtagning via navelkateter. Se särskilda anvisningar i stycket ”Provtagning vid blododling av barn”.

1.1.3.5 Desinfektion

Noggrann desinfektion av stickstället är av största vikt för att minska kontamination av blododlingen. För desinfektion vid perifer odling liksom vid odling från central infart, rekommenderar expertgruppen att följa de råd som anges i Vårdhandboken: https://www.vardhandboken.se/
Före prov tas till odlingsflaskor bör de första 3-5 mL blod dras i ett rör, vilket används till kemiska analyser (förutsatt att detta lämpar sig för den kemiska analysen) eller kasseras. Att inte använda första portionen blod till blododling minskar risken för kontamination med hudbakterier, på grund av ursköljningseffekten och rekommenderas vid blododling tagen både perifert via färskt stick eller PVK liksom från central infart (t.ex. CVK). Vid provtagning från central infart rekommenderas att en något större volym (5-10 mL) kasseras.

1.1.3.6 Blodvolym och turordning
Samtliga odlingsflaskor för blododling fylls i följd från samma venpunktion till minst 10 mL blod/flaska. Undertrycket i flaskorna tillåter större volymer (15-20 mL). Flaskorna fylls i ordningsföljden: 1 aerob, 2 anaerob, 3 aerob, 4 anaerob. Risken att kontaminerad odlingen medhudbakterier avtar för varje flaska som fylls i en serie. Aerob flaska fylls först då inokulering av syre i anaerob flaska annars har negativa konsekvenser för tillväxten av strikt anaeroba bakterier. En tillräckligt stor blodvolym är den viktigaste faktorn för en hög sensitivitet vid blododling. Rekommenderad blododlingsvolym hos vuxna är 40 - 60 mL (dvs. 2-3 flaskpar) vid varje odlingstillfälle.

1.1.3.7 Provtagning vid blododling av barn
Sensitiviteten är avhängig den volym blod som odlas men hos neonatala/mindre barn är en praktisk avvägning att odlad volym ska uppgå till högst 4 % av den totala blodvolymen hos barnet (Tabell 1). Odlad volym ska dock vara minst 1 mL. Liksom hos vuxna rekommenderas venös provtagning. Vid odling från kärlkateter bör detta om möjligt kombineras med venprov för att utesluta kateterkolonisation. Blod från navelkateter ska generellt inte användas för blododling på grund av risk för kontamination men kan vara den enda utvägen om perifer provtagning inte är möjlig. Blod aspireras då med steril spruta och inokuleras, efter byte till ren kanyl och desinfektion av flaskans membran, till odlingsflaskan.

För att minska risk för kontamination av blododling kan man hos större barn, likt vuxna, avskilja den första portionen blod vid provtagning och kassera/använda till kemiska analyser. Som riktmärke kan 3 mL avskiljas vid vikt >13 kg och 3-5 mL vid vikt >36 kg.
Tabell 1 Rekommenderad blodvolym för odling, barn

<table>
<thead>
<tr>
<th>Vikt barn (kg)</th>
<th>Total blodvolym barn (mL)</th>
<th>Motsvarar % av total blodvolym</th>
<th>Rekommenderad totalvolym för blododling (mL), fördelas beroende på mängd och flasktyp</th>
<th>Rekommenderad flasktyp</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>50 – 99</td>
<td><4</td>
<td>1 – 2</td>
<td>barnflaska*</td>
</tr>
<tr>
<td>1 - 2</td>
<td>100 – 200</td>
<td>4</td>
<td>4</td>
<td>barnflaska*</td>
</tr>
<tr>
<td>>2 - <13</td>
<td>>200</td>
<td>3</td>
<td>6</td>
<td>barnflaska* x 2</td>
</tr>
<tr>
<td>13 - 36</td>
<td>>800</td>
<td>2,5</td>
<td>20</td>
<td>aerob + anaerob</td>
</tr>
<tr>
<td>>36</td>
<td>>2 200</td>
<td>1,8 - 2,7</td>
<td>40 - 60</td>
<td>aerob + anaerob x 2-3</td>
</tr>
</tbody>
</table>

Observera att barnflaskan (kallas ofta PED-flaska) är en aerob odlingsflaska. Vid misstanke om växt av anaeroba bakterier bör komplettering med anaerob odling i vuxenflaska övervägas. Exempel på anaeroba infektioner hos barn är bukinfektion, absesser, Lemierres syndrom, protesendokardit, misstänkt sepsis hos neonatala barn som erhållit profylaktiskt probiotika etc.)

1.1.4 Transport efter provtagning

Efter provtagning ska transport till blododlingsskåp och start av inkubering av flaskorna ske snarast; helst inom 2 h efter provtagning. Detta innebär att inkubation av blododlingsflaskor ska kunna ske dygnet runt. Vårdgivare som utför blododling behöver säkerställa placering av blododlingsskåp nära verksamheten och optimera transportkedjorna till laboratoriet.

Innan inkubation ska flaskorna förvaras i rumstemperatur.

Vid eventuellt dröjsmål till inkubering, överskridande 12 h, eller vid tecken på misstänkt växt (såsom omslag av flaskbottens sensorfärg, hemolys, gasutveckling eller grumlig buljong) bör utodling ske före påbörjad inkubering. Detta för att minska risken för uteblivet larm om växt i blododlingsskåpet (falskt negativ odling).
1.2 ANALYS

Huvudbudskap analys

- Semiautomatiserade blododlingssystem ska användas.
- 5 dagars inkubationstid är tillräcklig i normalfallet.
- Förlängd odling (10 dagar) rekommenderas vid misstanke om protesendokardit, CIED-infektion, kärlgraftsinfektion, tularemi, brucellos och fungemi.
- Snabbt omhändertagande av positiv flaska (<2 h efter larm om växt) bör eftersträvas.
- Snabb art- och resistensbestämning direkt från positiv flaska rekommenderas starkt.

1.2.1 Remissregistrering
Utöver normala rutiner för ankomstregistrering så bör remisstext/beställning granskas för att upptäcka önskemål eller behov av förlängd inkubation liksom risk för laboratoriesmitta, som gör att omhändertagandet av odlingen bör ske med särskild försiktighet. Om möjligt bör uppskattning av den ifyllda blodvolymen göras av laboratoriet och rapporteras/återkopplas till provtagaren med relation till målvolymen.

1.2.2 Blododlingssystem

1.2.3 Inkubationstid
5 dagars inkubationstid är tillräcklig vid de flesta frågeställningarna rörande bakteremi, inklusive endokardit vid nativ klaff. Förlängd inkubation till 10 dagar rekommenderas vid misstanke om protesendokardit, CIED-infektion, kärlgraftsinfektion, fungemi, tularemi och
brucellos. Laboratoriet behöver göra remittenten medveten om och säkerställa rutiner för att dessa indikationer förmedlas och förlängd odling initieras.

1.2.4 Tid till omhändertagande av positiv flaska
En larmad flaska ska omhändertas snarast möjligt, då långa ledtider kan medföra negativa konsekvenser för patienten. Omhändertagande av positiva flaskor kräver mikrobiologisk kompetens och arbetsmiljömässiga förutsättningar (se nedan). Lokala rutiner inom laboratorie- och transportorganisationen för flaskor som signalerat i decentraliserade blododlingsskåp, påverkar således hur snabb den diagnostiska processen kan vara. Expertgruppen uppfattar det som ett rimligt mål att omhänderta en positiv flaska inom 2 h efter larm, men för att tillsa att detta kan ske dygnet runt krävs organisatoriska förändringar och resurser, som behöver vägas ihop med behov av andra analyser och ställas i relation till andra behov inom vården.

1.2.5 Omhändertagande av positiv flaska

- Vänd flaskan upp och ner någon gång för att blanda innehållet.
- Desinficera flaskans membran med t.ex. 70% etanol och låt torka.
- Penetra membranet med steril kanyl och dra upp blododlingsmedium med steril spruta eller använd annat system tillgängligt på marknaden för att fördela lämplig mängd till avsedda agarplattor (1-3 droppar), objektglas och eventuella snabbanalyser. Observera att övertryck kan vara särskilt betydande om flaskmembranet buktar utåt. Särskilt vid dessa tillfällen hålls med fördel en steril/etanoldränkt bomullstuss över korken i samband med att flaskmembranet penetreras.
- Utför gramfärgning och identifiera färg och morfologi i direktnanomloskopiski.
- Utför eventuell snabb art- och resistensbestämning.
Observera att punktion av blododlingsflaska, introducerar syre i odlingen. Buljong från anaerob flaska bör därför snarast odlas ut och plattor inkuberas anaerobt för att tillväxten ej ska påverkas.

Vid grundad misstanke om växt av riskklass 3-agens (Brucella spp., Francisella tularensis och Burkholderia pseudomallei/mallei) ska blododlingsflaskor primärt inkuberas i blododlingsskåp vid det lokala laboratoriet. Omhändertagandet av positiv flaska ska ske i mikrobiologisk säkerhetsbänk inom laboratorium med minst skyddsnivå 3 enligt Arbetsmiljöverket författningssamling AFS 2018:4 om smittrisker alternativt skickas till laboratorium med möjlighet för sådan diagnostik. Om mer än en flaska från samma patient signalerar positivt bör en aerob flaska skickas till skyddsnivå 3-laboratorium och övriga flaskor sparas på laboratoriet. Proverna ska då packas och transporteras enligt särskilt regelverk; se ”Packa provet rätt” på www.folkhalsomyndigheten.se. Vid erhållt negativt svar på analys för riskklass 3-agens på den skickade flaskan kan fortsatt omhändertagande av sparade flaskor ske vid det lokala laboratoriet.

Relativt ofta uppkommer en svag misstanke om växt av ovanstående agens p.g.a. av larm i enbart aerob odlingsflaska med larntid överstigande 48 timmar. Observera att denna gräns inte är absolut då B.pseudomallei/mallei kan larma lika snabbt som Enterobacterales, Brucella spp. så tidigt som efter drygt 40 timmar medan F.tularensis oftast har en larntid som väl överstiger 72h. I dessa fall behöver laboratoriet säkerställa rutiner för att, genom kontakt med remitterande och bedömning av anamnestext, säkerställa en rimlig hantering av flaskorna som balanserar det medicinska behovet av snabb diagnostik med risk för exposition av laboratoreipersonal. Om flaskor med låg risk omhändertas i HEPA-filtrerad säkerhetsbänk (klass 1 eller 2) inom skyddsnivå 2 så är erfarenheten att det är mycket liten risk för exposition för laboratoriets medarbetare i de första stegen av identifieringsprocessen (Gramfärgning och ev. Direkt ID).

1.2.5.1 Snabb artbestämning

Snabbanalys för artbestämning rekommenderas direkt på positivt blododlingsmaterial alternativt efter kort inkubation (2-4 h). För snabb artbestämning kan t.ex. MALDI-TOF, multiplex PCR, antigen- och agglutinationstester eller en kombination av dessa användas. Det enskilda laboratoriet bör välja en metod som passar dess logistik.

För mer information se ”Artbestämning från koloni” under rubriken ”2.3.1 Preliminärsvår”.
1.2.5.2 Direkt resistensbestämning

Direkt resistensbestämning bör användas för att så snart som möjligt kunna rapportera resultat avseende antibiotikakänslighet, men också för att visualisera blandflora eller resistenta kloner. För direkt resistensbestämning rekommenderas en metod med kort inkubationstid, t.ex. den av EUCAST framtagna lappdiffusionsmetoden (www.eucast.org) eller en kommersiell metod. Då en snabb metod inte finns tillgänglig för alla antibiotika/arter eller vid metodologiska svårigheter, blandflora mm, behöver snabbresistensbestämningen ofta kompletteras med en standardiserad resistensbestämning. För mer information se ”Resistensbestämning” under rubriken ”2.3.1 Preliminärsvar”.

1.2.5.3 Utodling

Rekommenderad standarduppsättning av odlingsplattor (Tabell 2).

Som standard rekommenderas utodling på hematin- och blodagar eller motsvarande substrat. Vid växt i anaerob flask sker utodling i tillägg på anaerob blodagar med efterföljande anaerob inkubering. Utodling med primär-, sekundär och tertiärstryk rekommenderas för att möjliggöra framväxt av isolerade kolonier och identifiera eventuell blandflora/olika koloniutseende.

För identifiering av anaerober i en blandflora appliceras antibiotikalappar med gentamicin (30 µg) och metronidazol (5 µg) i primärstryket på den anaeroba blodplattan. (Anaerober är naturligt resistenta mot aminoglykosider och de allra flesta känsliga för metronidazol.) För rekommenderad inkubationstid och miljö, vg se tabell 2.
Tabell 2 Utodling standardmedier, inkubationsmiljö och -tid

Angivna tider ska ses som längsta inkubationstid om växt dessförinnan ej visualiserats.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Inkubationsmiljö och -tid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperatur</td>
</tr>
<tr>
<td>Hematinagar</td>
<td>35-37 °C</td>
</tr>
<tr>
<td>Blodagar^1</td>
<td>35-37 °C</td>
</tr>
<tr>
<td>Anaerob blodagar^2</td>
<td>35-37 °C</td>
</tr>
</tbody>
</table>

^1 Optochin-lapp appliceras i primärstryket vid misstänkt växt av pneumokock.

^2 Utodling på anaerob blodagar görs vid växt i anaerob blododlingsflaska. Metronidazol- (5 µg) och gentamicinlapp (30 µg) appliceras i primärstryket.

*Observera att plattan snarast ska reinkuberas anaerobt om ingen växt noteras dag 1.

1.2.5.4 Hjälpmetoder för artidentifiering

Som komplement till standarduppsättning vid utodling kan tillägg av olika agarplattor, diagnostiska diskar och antibiotikalappar övervägas för snabbare artidentifiering. Val av hjälpmetod baseras på gramfärgningsresultat, direkt artbestämning och/eller kliniska uppgifter.

För rekommenderad inkubationstid och miljö, vg se tabell 3.

Nödvändiga hjälpmetoder

- Optochin-lapp: Appliceras i primärstryket på blodagar eller streptokock-agar vid misstanke om växt av pneumokocker.
- Agarplatta selektiv för svamp: Vid misstanke om fungemi (t.ex. Sabouraud-agar (SAB) och/eller kromogen svampagar).
- Agarplatta selektiv för Campylobacter: Vid misstanke om tarmpatogena Campylobacter (t.ex. charcoal-cefoperazone-deoxycholate agar (CCDA)).

Hjälpmetoder för selektion/identifiering av Gramnegativer

- Agarplatta selektiv för multiresistenta bakterier (t.ex. ESBL/ESBL-carba).
- Blodagarplatta selektiv för anaeroba gramnegativer vid misstänkt blandflora (t.ex. fastidious anaerobe agar (FAA) med neomycin eller vankomycin/nalidixinsyra.)
Hjälpmetoder för selektion/identifiering av Grampositiver

- Kromogen agar för snabbare identifiering av vissa bakteriearter (t.ex. *S. aureus*).
- Agarplatta selektiv för multiresistenta bakterier (t.ex. MRSA och VRE).
- Agarplatta selektiv för grampositiva bakterier vid misstänkt blandflora (t.ex. Columbia Nalidixic Acid Agar (CNA)).
- Anrikningsbuljong: Vid risk för svag/ingen växt av misstänkta pneumokocker inkuberas 2-5 droppar positiv blododling i anrikningsbuljong över natt, med efterföljande utodling.
- Aztreonamlapp (30 µg) i primärstryk, för selektion av grampositiver i en blandflora.
- Agglutinationsmetoder för identifiering av t.ex. Grupp A, C och G streptokocker, pneumokocker och *S. aureus*.
- Antigentester för identifiering av t.ex. pneumokocker.
Tabell 3 Utdling hjälpmetoder, inkubationsmiljö och -tid
Angivna tider ska ses som längsta inkubationstid om växt dessförinnan ej visualiserats.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Temperatur</th>
<th>Miljö</th>
<th>Tid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gramnegativt selektiv agar</td>
<td>35-37 °C</td>
<td>Luft</td>
<td>1 dygn</td>
</tr>
<tr>
<td>(MacConkey/CLED)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kromogen agar</td>
<td>35-37 °C</td>
<td>Luft</td>
<td>1 dygn</td>
</tr>
<tr>
<td>Grampositivt selektiv agar</td>
<td>35-37 °C</td>
<td>5% CO₂</td>
<td>1 dygn</td>
</tr>
<tr>
<td>(CNA/Gentiana)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svampagar</td>
<td>28-30 °C</td>
<td>Luft</td>
<td>2 dygn</td>
</tr>
<tr>
<td>(SAB/Kromogen svampagar)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blodagar selektiv för anaeroba gramnegativer¹</td>
<td>35-37 °C</td>
<td>Anaerobt</td>
<td>2* dygn</td>
</tr>
<tr>
<td>Campylobacter-selektiv agar (CCDA)</td>
<td>(37)-42 °C</td>
<td>Mikroaerofilt</td>
<td>2 dygn</td>
</tr>
<tr>
<td>Anrikningsbuljong</td>
<td>35-37 °C</td>
<td>Luft</td>
<td>1 dygn</td>
</tr>
</tbody>
</table>

¹Metronidazol- (5 µg) och gentamicinlapp (30 µg) appliceras i primärstryket.

*Observera att plattan snarast ska reinkuberas anaerobt om ingen växt noteras dag 1.
1.2.5.5 Larm om växt, positiv direkmikroskopi men utebliven växt efter vidare odling

Detta kan ske t.ex. vid växt av *Abiotrophia/Granulicatella*-arter (vitamin B6-beroende streptokock, tidigare känd som ”Nutritionally variant streptococci” (NVS)), *Streptococcus pneumoniae* (p.g.a. autolys) och andra krävande och långsamväxande arter (*Campylobacter* spp., *Corynebacterium* spp., *Cutibacterium* spp., kapnofila arter, etc.). Om kliniskt motiverat kan olika åtgärder vidtas i försök att få växt. Val av åtgärd görs utifrån gramfärgningsfynd och anamnes:

- Förläng inkubationstiden av plattorna.
- Odla ut odlingsflaskan igen på mer näringsrika/anpassade odlingsmedier.
- Odla ut odlingsflaskan igen i annan inkuberingsatmosfär.
- För över 0,5-1 mL material från odlingsflaskan till anrikningsbuljong eller inokulera ursprungsmaterial i ny blododlingsflaska.
- Överväg molekylärbiologisk analys (t.ex. riktad mot 16s rRNA genen) på positivt blododlingsmaterial.

1.2.5.6 Larm om växt men negativ i direkmikroskopi

Falskt larm kan ha många orsaker, exempelvis lågt satt tröskelvärde, för stor blodvolym eller högt antal leukocyter. Värdera i dessa fall alltid tillväxtkurvan från blododlingsinstrumentet. Frånvaro av tydligt exponentiell kurva stärker en eventuell misstanke om falskt larm, särskilt om övriga flaskor förblir negativa eller positiv blododling i närtid saknas.

Förnya gramfärgning med mer material eller komplettera med annan färgningstyp för att påvisa morfologi, t.ex. acridinorange eller metylenblått. Odla ut enligt standardprotokoll (Tabell 2) och sätt därefter åter in flaskan i inkubatorn enligt leverantörens instruktioner.

Om tillväxtkurvan uppvisar profil som vid växt i flaskan men ingen växt kan detekteras på plattor eller i mikroskopi kan molekylärbiologisk analys (t.ex. riktad mot 16s RNA genen) från positivt blododlingsmaterial övervägas.

1.2.5.7 Polymikrobiell blododling

Polymikrobiell blododling i samma flaska kan ibland upptäckas redan vid gramfärgning, men ibland först efter utodling eller direkt resistensbestämning. Om en odlingsflaska innehåller bakterier med olika tillväxthastighet (t.ex. snabbväxande bakterie och jästsvamp och/eller långsamväxande anaerob bakterie) finns risk för att den mer långsamväxande arten inte
kommer fram i odlingen. Om klinisk information finns som ger misstanke om t.ex. svampinfektion eller anaerob infektion så bör detta tas i beaktande i samband med utodling av positiv odlingsflaska och selektiva medier användas om möjligt för att gynna detektion av flera arter (se ovan).

Det är viktigt att laboratoriet i t.ex. provtagningsanvisningar och vid undervisning kommunikerar till beställarna att blododling har tydliga begränsningar i detektion av långsamväxande arter och jästsvamp om det samtidigt växer snabbväxande bakterier i odlingen.
1.3 POSTANALYS

Huvudbudskap postanalys

- Art/genus eller morfologi preliminärsvaras snarast möjligt efter att flaskan tagits ur inkubatorn.
- Odlingsfyndet ska snarast möjligt muntligt kommuniceras med ansvarig läkare/sjuksköterska. Detta kan frångås om annat tillvägagångssätt kan tillse att patienten är adekvat behandlad.
- Vid påvisad resistens mot pågående behandling ska behandlande läkare uppmärksammas snarast.
- Smittskyddsanmälan ska utföras och ansvarig läkare uppmärksammas i händelse av anmälnings/smittspårningspliktigt fynd.

1.3.1 Preliminärsvar

Preliminärsvar lämnas i normalfallet efter gramfärgning. Om snabb artbestämning utförs direkt på positivt blododlingsmaterial, kan preliminärsvar i stället lämnas efter den direkta artbestämningen, förutsatt att svaret inte påtagligt fördöjs av en sådan rutin.

Preliminärsvar bör innehålla följande information:

- Bakterieart/genus, om snabb artidentifiering medger angivande av det.
 Om bakterieart/genus inte kan rapporteras så rapporteras vad som ses i mikroskopin:
 - Grampositiv eller gramnegativ, kock eller stav, eller jästsvamp.
 - Kock i kedjor svaras ”Misstänkt enterokock, pneumokock eller streptokock”.
 - Kock i hopar svaras ”Misstänkt stafylokock”.
 - Flasktyp (aerob eller anaerob) där växten föreligger kan eventuellt rapporteras, då denna information kan vara viktig innan artbestämningen är utförd.
 - Antal flaskor med växt av totalantalet flaskor från samma provomgång kan rapporteras, då denna information har betydelse framför allt vid växt av misstänkt kontamination.

Angivande av tid till detektion (TTD) kan övervägas i vissa situationer, t.ex. vid bedömning av klinisk relevans eller misstänkt kontamination. Vid användning av TTD, som del av denna
bedömning, krävs att de egna arbetsrutinerna är verifierade lokalt och formulerade tillsammans med relevanta kliniker. Hänvisning till faktorer (t.ex. blodvolym, transporttid och antibiotikabehandling) som påverkar TTD ska vara välkända. För mer information och mer noggrann genomgång av begränsningar med metoden, se stycket om ”Kateterrelaterad bakteremi”.

Det är av stor vikt att fynd av positiv blododling kommunikeras så att patientens behandling och fortsatta vård optimeras. Svar förmedlas alltid skriftligt/elektroniskt och i tillägg bör alla nya, kliniskt relevanta fynd snarast möjligt, men senast inom två timmar från att flaskan tagits ur instrumentet, besvaras via telefon till ansvarig sköterska eller läkare på patientens vårdavdelning. Denna rutin kan frångås om det finns ett alternativt tillvägagångssätt som omhändertar att patienten har adekvat behandling.

Utförd åtgärd dokumenteras i LIS (Laboratorieinformationssystemet); datum, vårdavdelning, vald antibiotikabehandling och mottagare av eventuellt telefonbesked. Om den som muntligt förmedlar svar inte har tillräcklig medicinsk kompetens för att ge behandlingsvägledning så ska det finnas rutiner för att hänvisa t.ex. antibiotikafrågor till klinisk mikrobiolog eller infektionsläkare.

Vid misstänkt förorening kan kommunikation av fynd i blododling skjutas upp enligt lokala rutiner och telefonsvar uteslutas. Detta kan med fördel gå mit i 1 av 2 eller 1-2 av 4 flaskor (fynd i enskild PED-flaska således undantagen) av följande arter:

- Koagulasnegativa stafylokokker (KNS)
- *Corynebacterium* spp.
- *Cutibacterium* spp.
- *Bacillus* spp.
- *Micrococcus* spp.

Ett omfattande gramfärgningsresultat:

- Grampositiv kock, misstänkt stafylocock
- Grampositiv stav, misstänkt *Corynebacterium* eller *Cutibacterium*

Undantag: Fynd av ovanstående bakteriearter i enstaka flaska hos vissa patientgrupper kan ha klinisk relevans och kan därför behöva kommuniceras. Här uppmuntras till lokal diskussion så att det finns en samsyn mellan det mikrobiologiska laboratoriet, infektionskliniken och ev. andra relevanta kliniker.
Artbestämning från koloni

Alla fynd som bedöms kliniskt relevanta bör artbestämmas. Om isolatens koloniatseende är samstämmigt i samtliga positiva flaskor kan artbestämning från en flaska vara tillräcklig. Vid växt av KNS i flertalet flaskor bör artbestämning ske som hjälp i bedömningen avseende kontamination. Vid fynd där artbestämning med standardmetod är svår kan bestämning till genusnivå vara tillräcklig. Viridans-streptokocker (alfastreptokocker) besvares minst med grupptillhörighet. Efter artbestämning skickas nytt preliminärsvar och om fyndet kräver justering av antibiotikabehandling eller tydligt påverkar handläggningen kommuniceras fyndet även per telefon.

Vid fynd av *S. aureus* eller jästsvamp i blododling bör laboratoriet ha utarbetat rutiner tillsammans med infektionskliniken för optimering av patientens utredning och behandling. Även andra fynd bör föranleda särskilt utarbetade rutiner, till exempel vid fynd som ingar misstanke om endokardit.

Vid anmälnings- och smittspårningspliktiga sjukdomar ska laboratoriet, i tillägg till egen laboratorieanmälan till SmiNet, lämna skriftlig kommentar på svaret snarast möjligt. Laboratoriet påminner här remitterande läkare om att utan dröjsmål anmäla fyndet till smittskyddsläkaren i det landsting där den anmälande läkaren har sin yrkesverksamhet via SmiNet. Förslag på kommentarer: ”Anmälningspliktigt enligt Smittskyddslagen”.

Vid misstanke om provtagningsförorening: Ange i kommentarer om fyndet tolkas som misstänkt förorening (se ovan). Förslag på kommentar: ”Misstänkt provtagningsförorening. Kontakta laboratoriet vid önskemål om resistensbestämning”.

Resistensbestämning

Alla kliniskt relevanta fynd ska resistensbestämmas. För närmare uppgifter gällande miniminivå av resistensbestämning hänvisas till ”Minimiurval för resistensbesked” respektive ”Minimiurval för resistensövervakning” på RAFs hemsida (Referensgruppen för antibiotikafrågor) https://www.sls.se/raf/. I normalfallet görs resistensbestämning från en av fyra flaskor om samtliga flasks granfärning, koloniutseende och ev. artbestämning visar samstämmigt resultat. Om perifer odling är kompletterad med odling från central infart, bör resistensbestämning utföras från båda lokalerna.
Nytt svar skickas när svar på resistensbestämning finns. Om det empiriska antibiotikavalet är olämpligt ska det finnas lokala rutiner för att detta snarast meddelas till enheten där patienten vårdas.

1.3.2 Slutsvar

Slutsvar skickas när samtliga odlingsflaskor inom remissen har ett resultat och ev. uppföljande analyser är klara. Om man upptäcker att ett felaktigt svar tidigare rapporterats, och om detta riskerar att få kliniska konsekvenser, ska telefonkontakt med behandlande avdelning alltid tas.
1.4. ÖVRIGA ASPEKTER PÅ BLODODLING

1.4.1 Särskilda aspekter avseende diagnostik av fungemi

Blododlingar med angiven svampfrågeställning ska inkuberas i 10 dagar innan de besvaras med ”Ingen växt”. Laboratoriet bör informera remittenter om vikten av att ange ”misstanke om svampinfektion” på remissen alternativt använda speciell beställning för denna frågeställning.

Vid positiv blododling med fynd av eller frågeställning om svamp, rekommenderas standardutodling med tillägg av SAB- och kromogen svampagar. (Tabell 2) Alla isolerade svamparter skall identifieras till artnivå. För svåridentifierade isolat i MALDI-TOF kan jäsningsbaserad artbestämning och/eller sekvensering användas.

Resistensbestämning av svamp som växer i blododlingar ska alltid utföras första gången den aktuella arten växer fram. Vid upprepade positiva odlingar utförs resistensbestämning om det är kliniskt motiverat. För resistensbestämning används i första hand buljongspädningsmetod.

Vid växt av Candida spp. i blododling är det en överhängande risk att kvarliggande katetrar är koloniserade. Hos en patient med kvarvarande kärlkateter och misstänkt candidemi, bör blododling därför tas både perifert och från katetern. Vid växt i odlingen tagen genom kärlkateter bör man överväga kateterbyte, även om den perifera odlingen förblir negativ.

Icke odlingsbaserade metoder är viktiga komplement i diagnostiken av invasiv svampinfektion/candidemi. Det rekommenderas att man lokalt kompletterar blododlingen med sådana metoder. Nyligen har Referensgruppen för antimykotika (RAM) sammanfattat

1.4.2 Anmälningsplikt och insamling för nationell mikrobiell övervakning

Vissa invasiva isolat ska anmälas enligt smittskyddslagen. Flera av dessa, samt ytterligare utvalda smittämnen vilka saknar anmälningsplikt, ska skickas till Folkhälsomyndigheten. Utformningen av Folkhälsomyndighetens mikrobiella övervakningsprogram uppdateras årligen. För information om aktuell insamling se https://www.folkhalsomyndigheten.se/

1.4.3 Frysning av stammar

Alla blododlingsfynd från ny episod som bedöms kliniskt relevanta, bör sparas frysta i -70°C i minst ett år för eventuell utökad analys, t.ex. ytterligare resistensbestämning, subtypning eller toxintest. Det kan därtill finnas goda skäl att spara alla eller utvalda isolat längre för framtida verifieringar/valideringar på laboratoriet och forskning.

1.4.5 Kvalitetssäkring

Varje laboratorium har enligt lag skyldighet att utföra sin verksamhet med hög kvalitet och ska se till att verksamheten fortlöpande utvecklas och kvalitetssäkras. Ett bra sätt att kvalitetssäkra delar av sin metod är genom deltagande i externa kvalitetssäkringsprogram. Blododlingsdiagnostiken lämpar sig också väl för kvalitetsindikatorer som kan följas över tid. Baserat på de rekommendationer som lämnats i detta dokument lämnar expertgruppen följande förslag på kvalitetsindikatorer:

1. Tid från provtagning till inkubation i blododlingsskåp.
 a. Måltal >95 % inom 2 h, acceptabel nivå 95 % inom 4 h.
2. Andel aeroba/anaeroba flaskor med ≥8 mL/flaska eller blododling (4 flaskor) med ≥35 mL.
 a. Måltal: >95 % ska uppfylla uppsatta volymsgränser.
3. Andel prover med fynd av koagulasnegativa stafylokocker i ≤2 flaskor (per fyra flaskor) alternativt som bedömts som provtagningskontamination.
 a. Måltal <3 %
4. Tid från larm om växt till första preliminärvär (se kommentar under stycke 2.2.4 ”Tid till omhändertagande av positiv flaska”, gällande förutsättningar och logistik att väga in i uppfyllelsen av måltalen).
 a. Måltal 95 % inom 2 h
2 SPECIALAVSNITT

I avsnitten nedan beskrivs diagnostik som kan användas vid misstanke om kateterrelaterad infektion i blodbanan (CRBSI) och infektiös endokardit. I vissa fall finns vid dessa tillstånd inte tillräcklig evidens för att bara rekommendera en metod. Flera alternativa metoder finns därför beskrivna.

2.1 DIAGNOSTIK VID MISSTÄNKT KATERRELATERAD INFEKTION I BLODBANAN (CRBSI)

Huvudbudskap kateterrelaterad infektion i blodbanan

- Odling från kateterspets ska bara utföras när en kateter avlägsnas p.g.a. misstanke om infektion.

- Kvantitativa/semikvantitativa odlingar av kateterspets (Sonikeringsmetoden eller Maki-metoden) rekommenderas.

- Blododling med tidsskillnad är svårtolkat p.g.a. av flera metodologiska svårigheter och bör därför tolkas med försiktighet.

Diagnostik av CRBSI bygger på klinik och laboratoriefynd och kan misstänkas hos en patient med kontinuerlig centralvenös infart (CVI) där annan förklaring till infektionen saknas. I dag finns flera mikrobiologiska metoder för diagnostik vid misstänkt CRBSI men ingen metod anses vara ”Gold standard”, varför val av metod väljs utifrån metodens prestanda och laboratoriets förutsättningar. Diagnostiken vid CRBSI bygger på att samma mikroorganism (överensstämmande avseende både art- och resistensmönster) återfinns både i CVI/CVI spets och i perifer blododling, alternativt att en behandlingsresistent BSI läker först efter borttagande av misstänkt infekterad CVI.

Oavsett odlingsmetod rekommenderar expertgruppen att tröskeln för att artbestämma och rapportera även lågpatogena fynd bör vara låg. Samtliga provtagningssätt är dock kopplade med risk för kontamination vilket bör beaktas och kommenteras i svar. Odlingsfynd bör vägas samman med klinik och övriga laboratorie-/odlingsfynd.
Vid påvisad växt av svamp i CVI bör alltid byte/borttagande av CVI utföras, även om en samtidig perifer blododling förblir negativ.

2.1.2 Metoder

Mikrobiologisk diagnostik vid misstanke om CRBSI baseras på två skilda principer; den ena gäller för extraherad kateter, den andra för kvarvarande kateter. Vid misstanke om CRBSI så ska alltid blododling från den misstänkt infekterade infarten och perifer odling tas. Odling från extraherad kateter ska bara utföras vid misstanke om CRBSI.

2.1.2.1 Metoder för extraherad kateter

Semikvantitativ odling av kateterspets (Maki-metoden)

Maki-metoden är idag en väletablerad metod. Hud och instickställe lufttorkas efter noggrann desinfektion med 5 mg/mL klorhexidinlösning eller motsvarande. Efter avveckling av katetern frigörs den distala kateterdelen (5 cm) med steril teknik och läggs i steril rör. Transport sker därefter snarast möjligt till mikrobiologiskt laboratorium för analys. På laboratoriet rullas kateterspetsen (5 cm) minst 3 gånger fram och tillbaka över en blodagarplatta följt av inkubering aerobt i 37°C under 48 timmar. Fynd av ≥1 CFU av samma art anses signifikant för kolonisation. Metoden upptäcker endast distal och extraluminal kolonisation. Metoden är snabb, enkel, kostnadseffektiv och har låg risk för kontamination jmf med sonikering (se nedan). Metoden kan ge falskt negativt resultat då den inte fångar eventuell växt inne i kateterlumen.

Kvantitativ sonikeringsodling

Sonikering är en metod där man med hjälp av ultraljud frigör bakterier som vidhäftat till ytor, både endo- och extraluminalt. Denna metod har fördelen att den bättre kan erbjuda påvisning av bakterier i biofilm i kateterlumen jämfört med konventionell odling enligt Maki-metoden. Alternativa metoder med samma princip som sonikerings-baserad odling finns beskrivna, till exempel vortex av kateterspets i fysiologisk koksaltröra.

2.1.2.2 Metod vid kvarvarande kateter

Blododling med tidsskillnad

Blododling med tidsskillnad (DTTP) baseras på att blod tas både från misstänkt infekterad infart och perifert och att det flaskpar som är draget ur en infekterad CVI vid CRBSI,
teoretiskt innehåller högre bakteriehalter (CFU/mL) än blodet i det flaskpar som är taget från en perifer ven och därmed signalerar växt minst 2 timmar tidigare än det perifera blodet. För att den teoretiska modellen ska möjliggöra jämförelse av de parade flaskorna krävs att:

- Blododlingen tas under antibiotikafritt intervall.
- Provtagning ur CVI och perifer ven båda fullföljs inom 15 minuter. För att undvika risken att överstiga dessa 15 minuter rekommenderas att flaskpåret från perifert stick fylls före flaskpåret från CVIn.
- Blodvolymerna är identiska (10 mL/blododlingsflaska från CVI respektive perifert stick).
- Flaskpåret följs åt från provtagning till inkubering och snarast möjligt transportereras till mikrobiologiskt laboratorium.
- Blododlingen inte uppvisar polymikrobiell växt.
- Att det är samma art med samma resistensmönster som påvisas i båda flaskpåret

Metodens tillförlitlighet har ifrågasatts och finns inte längre med i de engelska blododlingsrekommendationerna från 2019 (National Health Service; NHS).

P.g.a. svårigheten att fylla flaskpåret med identiska blodvolymor inom 15 minuter och snabb transport till laboratoriet liksom det varierande stödet i den vetenskapliga litteraturen anser expertgruppen att metoden bör användas med försiktighet. Sensitivitet och specificitet har i studierna varierat mellan 25-100 % respektive 33-100 %, med lägst stöd vid fungemier respektive S. aureus-bakteremier. Bäst förankring i litteraturen bedöms metoden ha vid KNS-bakteremi, men tidsgränsen om 2 h bör ses som en del bland flera faktorer att väga samman till en helhetsbedömning.

Rekommendation avseende kassering av den första portionen blod i samband med provtagningen vid DTTP saknas. Dock anser expertgruppen att antibakteriella substanser ("antibiotikalås") eller andra vätskor som medför utspädningseffekt bör avskiljas/kasseras innan blododling tas.

Vid CVI med multilumen bör ett flaskpar tas från varje lumen
3.1.2.3 Odling av implanterad venös kateter

Konsensus saknas hur provtagning och odling av port reservoar eller septum bäst utförs. De senaste europeiska riktlinjerna (ESCMID) föreslår odling från extraherat septum vortexat i 0,85% NaCl-lösning och/eller provtagning av makroskopisk debris från septum eller ”svabbning” av portens inre delar. Sonikering av extraherat material kan vara ett alternativt tillvägagångssätt.

2.2 DIAGNOSTIK AV INFEKTION SÄMRENDOKARDIT (IE)

Huvudbudskap infektions endokardit (IE)

- Blododling från ett stick rekommenderas vid endokardit liksom vid övrig blododling.
- Den större volyem blod (60 mL) rekommenderas; särskilt vid förekomst av klaffprotes.
- 5 dagars inkubationstid är tillräckligt i normalfallet.
- Förlängd odling (10 dagar) krävs vid klaffprotes och vid misstanke om långsamtväxande bakterier (t.ex. *Cutibacterium acnes*).

Blododling är ett av de viktigaste verktygen för diagnos av IE samt för säkerställande av effektiv behandling av patienten. Vid de flesta infektionstillstånd med bakterier i blodbanan är bakteremin kontinuerlig varför blododlingar separerade i tid inte är viktiga, som man tidigare trott. Samtliga flaskor tas därför från ett och samma stick även vid misstanke om endokardit. Dock är adekvat blodvolyms stor vikt, då bakteriehalten i blodet kan vara mycket låg. Därför rekommenderas, särskilt vid subakut endokardit och vid förekomst av klaffprotes, den större volyem blod till odling; dvs. tre flaskpar (2 x 3 flaskor, minst 10 mL blod/flaska, totalt minst 60 mL).

5-dagars inkubationstid är tillräckligt i de allra flesta endokarditfall (inklusive arterna tillhörande HACEK-gruppen) men förlängd inkubation till 10 dagar rekommenderas vid förekomst av främmande material och vid misstanke om särskilt långsamtväxande bakterier såsom *Cutibacterium* spp.
2.2.1 Art- och resistensbestämning vid infektiös endokardit

2.2.2 Blododlingsnegativ infektiös endokardit

2.2.3 Mikrobiologisk diagnostik av biologisk hjärtklaff

Molekyläribiologiska metoder ger oftast inget besked om eventuell antibiotikaresistens och kan inte ge ett komplett resistensbesked. Observera också att bakteriellt DNA kan påvisas lång tid efter utläkning. Odlingsfynd/molekyläribiologiska fynd ska alltid relateras till fynd i blododling och/eller andra kompletterande analyser samt klinisk bild.

2.2.4 Histopatologi
Histopatologi kan övertygasa för att utesluta bakteriell endokardit om övriga metoder utfallit negativa. Metoden används inte regelmässigt i Sverige. För denna analys krävs ytterligare en biopsi som då hanteras enligt lokala rutiner för histopatologiska undersökningar.

2.2.5 Mikrobiologisk diagnostik av kablar och icke-biologisk hjärtkläf
Om möjligt delas materialen upp i två delar på operation; en för odling och en för molekyläribiologisk diagnostik. Kabel och icke-biologisk klaff kan odlas enligt sonikeringsmetoden (se ”3.1.2.1.2 Kvantitativ sonikeringsodling”). Om laboratoriet saknar tillgång till sonikering kan man svabba materialet med steril pinne varefter kabeln eller klaffen läggs i anaerob anrikningsbulljong och vortexas. Den steril pinnen stryks på både aeroba och anaeroba näringsrika fasta substrat som inkuberas i minst 2 dygn (anaerobplatta minst 5 dygn för att gynna växt av t.ex. *Cutibacterium* spp). Bulljongen bör inkuberas minst 7 dagar. Eventuell växt bedöms med jämnt mellanrum och bulljongen odlas ut på aeroba och anaeroba näringsrika fasta substrat vid synlig växt (inkuberas två dygn). Om ingen växt syns bör material från bulljongen ändå odlas ut efter hela inkubationstiden.

Oavsett odlingsmetod rekommenderar expertgruppen att art- och resistensbestämning ska utföras på all växt och rapportering ska ske även av lågpatogena fynd. Samtliga ovanstående provtagningssätt är dock kopplade med risk för kontamination vilket bör beaktas. Odlingsfynd bör vägas samman med fynd i andra odlingar.
3 Förtydliganden och kommentarer

3.1 BLODODLING

Blododling är standardmetoden för att hitta etiologiskt agens hos patienter med sepsis och andra allvarliga infektioner med misstanke om förekomst av bakterier i blodbanan (bakteremi). Extracellulära bakterier i infekterad vävnad vävnad dränras via lymfcirkulationen till blodet och elimineras till största delen vid passage genom lever och mjälte. I mindre utsträckning kan bakterier som överlevt i fagocyter spridas med blodet till andra delar av kroppen. Blododling har en låg sensitivitet även hos patienter med kliniskt verifierad sepsis. Studier har visat att det saknas korrelation mellan febertoppar och odlingspositivitet men att blododlingar tagna inom 2 h före till 2 h efter frossa ökar sannolikheten för positiv odling.

3.1.1 Desinfektion

Koagulasnegativa stafylokocker (KNS) är det vanligaste fyndet vid blododling men också den bakteriegrupp från huden som oftast kontaminerar odlingen, vilket leder till problem vid tolkning av fyndets kliniska relevans. Trots att KNS är den vanligaste kontaminanten vid blododling utgör KNS tillsammans med Cutibacterium spp <5 % av hudens mikrobiota. Antalet CFU av KNS på huden i armbågsvecket är i medeltal 1,7 CFU/cm² (0,1 – 30 CFU/cm²) vilket betyder att risken att träffa en mikrokoloni är 1-8 % med en nål med ytterdiametern 0,5 mm och stickvinkeln 45° mot huden.

Huddesinfektion minskar mängden bakterier på hudytan men bakteriekolonier finns kvar inne i stratum corneum och i hårfolliklar varför hudfloran inte helt kan elimineras. Noggrann huddesinfektion kan minska risken att träffa en mikrokoloni KNS med häften och samma minskade risk uppnås vid provtagning genom ett stick jämfört med två.

Flera studier har visat att rätt teknik med rent handhavande vid blododling minskar antalet kontaminationer av blododlingar. Användning av särskilda sterilförpackade blododlingskit har inte någon effekt på kontaminationsgraden. Utbildning av personal till att utföra korrekt huddesinfektion och odla endast från ett stick är därför av stor vikt för att få ner frekvensen av framodlad hudflora.
3.1.2 Avskiljning av första portionen blod

Den största mängden hudbakterier, som fångas upp av provtagningsnålen vid en blododling, återfinns i de första 3-5 mL blod som tappas. Genom att börja en blododling med att avskilja denna första blodportion, minskas antalet blododlingsflaskor med hudkontaminationer. Kassering av första blodportionen vid odling dragen ur en CVI (t.ex. CVK) minskar inte kontaminationsfrekvensen av blododlingar men väl bakteriehalten som följer med blodet från en kontaminerad kateter ner i flaskan. Avskiljning av första blodportionen (5-10 mL) rekommenderas för att inte få med antibakteriella vätskor (heparin, alkohol mm) eller NaCl i blododlingsflaskan.

3.1.3 Blodvolym

Det har länge varit känt att bakteriemängden (CFU/ml) är låg i blodet vid svåra infektioner och sepsis. Studier har visat att bakteriehalten kan vara så låg som 0,1-2 CFU/mL i 53 % av alla positiva blododlingar vid sepsis och dessa siffror ligger till grund för rekommendationen att 40-60 mL blod ska tas vid varje undersökningstillfälle. De bakterier som kommer ut i blodet elimineras snabbt. För att alltid få ett positivt utfall krävs minst 5 enheter (CFU) per undersökt mängd blod; vilket betyder att vid 1 CFU/mL blod krävs 5 mL och vid 0,1 CFU/mL blod krävs 50 mL för att alltid få en positiv odling. Äldre studier visade att upprepade blododlingar av små volymer inte alltid ledde till växt i varje odling och man trodde då att bakterieförekomsten i blodet var intermittent. Senare studier har dock visat att om samma blodvolym tas direkt vid ett och samma provtagningsstillfälle istället för uppdelat på flera upprepade provtagningar (med 0,5-1 h mellanrum) så erhålls samma resultat. Blododling från ett och samma stick minskar därtill risken för kontamination av odlingen.

3.1.4 Blododlingsflaskor

Den näringsrika odlingsbuljongen, med SPS och tillväxtfaktorer (hemin, NAD, L-cystein, aminosyror och vitaminer) befrämjar växt av flertalet bakterier och jästsvampar och har inte ändrats väsentligt de senaste 30 åren. Natriumpolyanetholsulfonat (SPS) inaktiverar i tillägg komplement och hämmar därmed fagocytos. Då allt för koncentrerad SPS hämmar tillväxt av vissa bakterier så är det viktigt att rätt mängd blod tas. I vissa flasktyper finns även tillsatts av saponiner som lyserar blodceller och möjliggör för fagocytade, men ej avdödade, bakterier att växa till.

En engångsdos antibiotika minskar möjligheten att odla fram bakterier till omkring hälften under minst 24 timmar. Om patienten står på antibiotika så ska ev. blododling därför tas strax före nästa dos. För att minska effekten av eventuell antibiotika i blodet så innehåller de blododlingsflaskor som nu används även resiner (plastkulor) som binder upp antibiotika. Pediatriska flaskor är avsedda för att med mindre mängder blod ge tillräcklig mängd NAD och hemin för tillväxt.

3.1.5 Transport efter provtagning

Blododlingsflaskor ska inkuberas så snart som möjligt av två skäl. Dels att en snabb inkubation kan resultera i ett snabbare svar vilket i sin tur kan ge vården bättre förutsättningar att ge patienten en korrekt antibiotikabehandling. Dels så innebär förlängd transporttid risk för försämrad detektion.

3.1.6 Larm om växt

Risk för falskt negativ blododling kan ske om flaskor förvarats för varmt eller i ljus innan användning. Värme/ljus kan få pH-indikatoren i flstkanten att ändra färg så att det färgomslag, som annars sker tack vare koldioxidproduktion vid växt, inte kan upptäckas. Det är därför av största vikt att odlingsflaskorna förvaras enligt tillverkarens instruktion.
3.1.7 Tid till omhändertagande av positiv flaska

3.1.8 Blododling från barn

Liksom hos vuxna är den enskilt viktigaste parametern, vid blododling av barn, att erhålla tillräcklig blodvolym. Optimal provvolym blod är sämre undersökt hos barn jämfört med vuxna. Kliniska studier har visat att en låg nivå av bakterier i blodet är vanligt förekommande även hos små barn. Tas en för liten blodmängd riskerar blododlingen att bli falskt negativ. Kriterier för att räkna ut tillräcklig blodvolym bör baseras på vikt, inte ålder, och relateras till total blodvolym, se tabell 1.

- Använd helst speciella barn-/lägvolymsflaskor för små blodmängder, då de är anpassade för att upprätthålla ett bra blod/medium-ratio.
- Om barnflaskor inte är tillgängliga används aerob vuxenflaska. Anaerob vuxenflaska bör övervägas vid misstänkt anaerob infektion.
- Det är rekommenderat att hellre inokulera en större volym i en flaska än att dela upp blodet i flera flaskor. Anpassa mängd enligt tillverkare och respektive flasktyp.
3.2 FUNGEMI

Invasiv svampinfektion är relaterad till hög mortalitet och morbiditet. Vanligaste formen av invasiv svampinfektion är candidemi. Candidemi förekommer framför allt hos patienter som: (i) är immunsupprimerade, (ii) genomgår avancerad medicinsk behandling (dialys, antibiotikaterapi, intravenös nutrition) eller (iii) genomgått stor kirurgi. Det finns ingen klinisk bild eller symptom som är specifik för candidemi. Därför bör invasiv candidainfektion misstänkas hos patienter med kända riskfaktorer, som har en oförklarlig feber och som inte svarar på antibakteriell behandling.

Polymikrobell infektion i blodbanan med jästsvamp och bakterier eller med två olika jästsvampar ökar i allt högre grad. Det finns beskrivet att 18-27 % av alla patienter med candidemi samtidigt har bakterier i blodet. Det är därför viktigt att ha candidemi i åtanke vid blododlingsdiagnostik hos svårt sjuka patienter och, där möjligheten finns, komplettera den vanliga blododlingen med selektiv svampflaska.

Blododling har låg känslighet (21–71 % sensitivitet vid obduktionsbekräftad invasiv candidainfektion), vilket ökar vikten av upprepad blododling med stor volym (≥40–60 mL dagligen) vid kliniskt misstänkt candidemi.

3.3 Direktpåvisning av bakterier och jästsvamp i blod

Under de senaste två decennierna har molekylära metoder såsom PCR utvecklats för detektion av bakterier och jästsvampar direkt från patientens blod. Dessa metoder har generellt högre eller lika hög känslighet jämfört med blododling men kräver utrustning och är mycket mer kostsamma jämfört med blododling. Tabell 5 sammanfattar de metoder som finns tillgängliga idag:
<table>
<thead>
<tr>
<th>System</th>
<th>Metod</th>
<th>Tid till svar (timmar)</th>
<th>Täckning mikroorganismer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SepsitTest</td>
<td>Bredspektrum PCR + sekvensering</td>
<td>6</td>
<td>>345 bakterier (grampositiva och gramnegativa), svamp</td>
</tr>
<tr>
<td>Molzym, Bremen, Tyskland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MagicPlex</td>
<td>Multiple PCR + multiplex RT PCR</td>
<td>3–5</td>
<td>21 bakterier (grampositiva och gramnegativa) speciesnivå (90 genusnivå), 6 svamp</td>
</tr>
<tr>
<td>Seegene, Seoul, Korea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2Dx, T2 Biosystems, Lexington, MA, USA</td>
<td>Magnetisk resonansteknologi</td>
<td>3–5.5</td>
<td>6 bakterier (grampositiva, gramnegativa) eller 5 jästsvamp</td>
</tr>
<tr>
<td>T2 Biosystems, Lexington, MA, USA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
https://www.who.int/csr/resources/publications/biosafety/Biosafety7.pdf?ua=1
https://www.gov.uk/government/collections/standards-for-microbiology-investigations-smi
https://www.gov.uk/government/collections/standards-for-microbiology-investigations-smi

33. Chaiyakunapruk N, Veenstra DL, Lipsky BA et al. Vascular catheter site care: the clinical and economic benefits of chlorhexidine gluconate compared with povidone

68. Hall KK, Lyman JA. Updated review of blood culture contamination. *Clinical microbiology reviews* 2006; **19**: 788-802.

79. Klingspor L, Muhammed SA, Ozenci V. Comparison of the two blood culture systems, Bactec 9240 and BacT/Alert 3D, in the detection of Candida spp. and bacteria with polymicrobial sepsis. *European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology* 2012; **31**: 2983-7.

134. Sjölín J HL. Svampinfektioner (invasiva), behandling. Göteborg. [uppdaterad 2021-10-12]. [https://www.internetmedicin.se].